Adrenocorticotropin/cyclic adenosine 3',5'-monophosphate-mediated transcription of the human CYP17 gene in the adrenal cortex is dependent on phosphatase activity.
نویسندگان
چکیده
cAMP-dependent transcription of steroid hydroxylase genes involves activation of cAMP-dependent protein kinase (PKA) and subsequent phosphorylation of downstream target proteins. Although the requirement for the activation of PKA is well established, none of the transcription factors required for steroid hydroxylase gene transcription have been found to be PKA phosphoproteins. In this study we examined the role of changes in phosphorylation state on the expression and transcriptional activity of the human CYP17 gene (hCYP17). Using inhibitors of serine/threonine phosphatase activity (okadaic acid) and phosphotyrosine phosphatase activity (peroxyvanadate), we can inhibit the cAMP-inducible binding of the steroidogenic factor-1 (SF-1), p54(nrb)/NonO, and polypyrimidine tract-binding protein-associated splicing factor (PSF) complex required for regulation of transcription to the promoter of hCYP17. Further, both okadaic acid and peroxyvanadate attenuate cAMP-stimulated increases in endogenous hCYP17 mRNA expression and in hCYP17 promoter-reporter construct luciferase activity. In vivo phosphorylation and immunoprecipitation of SF-1 show a cAMP-stimulated decrease in (32)P-labeled SF-1. Our findings demonstrate that activation of protein phosphatase(s) is essential for cAMP-dependent transcription of hCYP17 in H295R cells and suggest a role for PKA in phosphatase activation, which leads to dephosphorylation of SF-1 and increased gene transcription.
منابع مشابه
CAMP-dependent protein kinase enhances CYP17 transcription via MKP-1 activation in H295R human adrenocortical cells.
Steroid hormone biosynthesis in the adrenal cortex is controlled by adrenocorticotropin (ACTH), which increases intracellular cAMP, resulting in the activation of cAMP-dependent protein kinase(PKA) and subsequent increase in steroidogenic gene transcription. We have found that a dual-specificity phosphatase is essential for conveying ACTH/cAMP-stimulated transcription of several steroidogenic g...
متن کاملMultiple Signaling Pathways Coordinate CYP17 Gene Expression in the Human Adrenal Cortex.
Optimal levels of steroid hormone biosynthesis are assured by the integration of several regulatory mechanisms, including substrate delivery, enzymatic activity, and gene transcription. In the human adrenal cortex, optimal glucocorticoid secretion is achieved by the actions of adrenocorticotropin (ACTH), which exerts transcriptional pressure on all genes involved in steroidogenesis. One of thes...
متن کاملInhibition of CYP17 expression by adrenal androgens and transforming growth factor in adrenocortical cells
Cytochrome P450c17, encoded by the CYP17 gene, is a component of the 17 -hydroxylase/17,20-lyase enzyme complex essential for production of adrenal glucocorticoids and androgens as well as gonadal androgens. The expression of CYP17 in adrenocortical cells is stimulated by corticotropin (ACTH) via the signal transduction pathway involving cAMP and protein kinase A (PKA). Thus, in addition to glu...
متن کاملPioglitazone inhibits androgen production in NCI-H295R cells by regulating gene expression of CYP17 and HSD3B2.
Thiazolidinediones (TZDs) such as pioglitazone and rosiglitazone are widely used as insulin sensitizers in the treatment of type 2 diabetes. In diabetic women with polycystic ovary syndrome, treatment with pioglitazone or rosiglitazone improves insulin resistance and hyperandrogenism, but the mechanism by which TZDs down-regulate androgen production is unknown. Androgens are synthesized in the ...
متن کاملTranscriptional control of adrenal steroidogenesis: novel connection between Janus kinase (JAK) 2 protein and protein kinase A (PKA) through stabilization of cAMP response element-binding protein (CREB) transcription factor.
In the adrenal gland, adrenocorticotropin (ACTH) acting through the cAMP protein kinase (PKA) transduction pathway is the main regulator of genes involved in glucocorticoid synthesis. The prolactin (PRL) receptor is expressed in the adrenal cortex of most mammals, but experimental proof that PRL ensures direct control on glucocorticoid synthesis in rodents remains elusive. To unravel the physio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Endocrinology
دوره 143 5 شماره
صفحات -
تاریخ انتشار 2002